

NR 1/2022 (22) DWUMIESIĘCZNIK ISSN 1642-0136

The impact of high body weight on children's aerobic capacity in the primary school age

> Wpływ nadmiernej masy ciała na wydolność fizyczną dzieci w młodszym wieku szkolnym

Physical activity and patients with frailty syndrome Aktywność fizyczna u pacjentów z zespołem kruch

ZAMÓW PRENUMERATE!

THE OFFICIAL JOURNAL OF THE POLISH SOCIETY OF PHYSIOTHERAPY

SUBSCRIBE!

www.fizjoterapiapolska.pl www.djstudio.shop.pl prenumerata@fizjoterapiapolska.pl

ULTRASONOGRAFIA W FIZJOTERAPII

Autoryzowani dystrybutorzy

Mar-Med

+48 22 853 14 11

info@mar-med.pl

Ado-Med

+48 32 770 68 29

adomed@adomed.pl

W programie Konferencji między innymi:

- sesje naukowe,
- warsztaty praktyczne,
- sala wystawiennicza,
 - uroczysty bankiet.

PATRONAT NAUKOWY:

Wiceprezes Polskiej Akademii Nauk

PAN POISKA AKADEMIA NATIK

prof. Stanisław J. Czuczwar

SREERNY SPONSOR:

WYSTAWCY:

PATRONAT MEDIALNY:

Rehabilitaga

Rehabilitaga

fizjoterapia polska

www.konferencja-ptf.pl

Fizjoterapeuto!

Problem zaczyna się u podstawy, czyli od stóp.

Leczenie

fizjoterapeutyczne bez uwzględnienia **zdrowia stóp** i **prawidłowej postawy** niesie ze sobą poważne ryzyko niepożądanych konsekwencji biomechanicznych.

Zaufaj FootMedical!

Jesteśmy producentem, dystrybutorem oraz ośrodkiem szkoleniowym specjalizującym się w biomechanice kończyny dolnej i jej zaopatrzeniu, szczególnie w dynamiczne wkładki ortopedyczne.

CERTYFIKOWANE WYROBY MEDYCZNE O POTWIERDZONEJ NAUKOWO SKUTECZNOŚCI

FootWave[™]

Dynamiczne wkładki ortopedyczne dedykowane najczęstszym schorzeniom stóp (haluksy, płaskostopie, ostroga piętowa, itp.). Dostępne również dla dzieci!

www.footwave.pl

- S +48 506 310 411
- 🖂 biuro@footmedical.pl
- ⊠ zamowienia@footmedical.pl

footmedical.pl/kontakt

Vasyli Medical

Wkładki ortopedyczne indywidualnie dopasowywane do stopy pacjenta poprzez termoformowanie i precyzyjne kliny oraz peloty korekcyjne.

www.vasylimedical.pl

www.footmedical.pl

Digitsole Pro

Bezprzewodowe wkładki diagnostyczne badające chód i bieg pacjenta w całym cyklu (również fazie przenoszenia i lotu!), w naturalnych warunkach poruszania się, oparte o sztuczną inteligencję w chmurze.

www.digitsole.pl

FootMedical Specjalistyczne zaopatrzenie ortotyczne ul. Chwaszczyńska 170C / 24 81-571 GDYNIA

NOWOŚĆ W OFERCIE

PhysioGo.Lite SONO

NIEWIELKIE URZĄDZENIE EFEKTYWNA TERAPIA ULTRADŹWIĘKOWA

Zaawansowana technologia firmy Astar to gwarancja niezawodności i precyzyjności parametrów. Urządzenie, dzięki gotowym programom terapeutycznym, pomaga osiągać fizjoterapeucie możliwie najlepsze efekty działania fal ultradźwiękowych.

Głowica SnG to bezobsługowe akcesorium o dużej powierzchni czoła (17,3 cm² lub 34,5 cm² w zależności od wybranego trybu działania). Znajduje zastosowanie w klasycznej terapii ultradźwiękami, fonoferezie, terapii LIPUS i zabiegach skojarzonych (w połączeniu z elektroterapią).

wsparcie merytoryczne www.fizjotechnologia.com

0

ul. Świt 33 43-382 Bielsko-Biała

t +48 33 829 24 40 astarmed@astar.eu

www.astar.pl

www.actabalneologica.pl

Acta Balneologica jest naukowym czasopismem Polskiego Towarzystwa Balneologii i Medycyny Fizykalnej. Ukazuje się od 1905 roku.

Na łamach kwartalnika publikowane są recenzowane prace z zakresu balneologii, bioklimatologii, balneochemii, hydrogeologii i medycyny fizykalnej – fizjoterapii, krioterapii, kinezyterapii, presoterapii, a także rehabilitacji.

Ze względu na poruszaną tematykę jest wyjątkowym czasopismem nie tylko w skali kraju, ale i Europy.

PUNKTÓ\ MEIN

Prenumerata roczna kosztuje 150 zł. Dla członków PTBiMF obowiązuje cena obniżona - 60 zł. Koszty wysyłki na terenie kraju wliczone w cenę prenumeraty. Ceny zawierają 5% VAT.

Zamówienia prenumeraty i pytania prosimy kierować na adres: prenumerata@wydawnictwo-aluna.pl Wydawnictwo ALUNA

luga

FUNKCYJNA **BIELIZNA LECZNICZA**

PRZECIWŻYLAKOWA

Przeciwżylakowe wyroby pończosznicze włoskich producentów, bardzo skuteczne i niezwykle eleganckie. Dostępne w I, II oraz III klasie kompresji w wielu modelach, w różnym stopniu przezroczystości (m. in. wyjątkowo przezroczyste w II kl. ucisku), w szerokiej gamie kolorystycznej, w różnych wersjach długości, z palcami zamkniętymi lub otwartymi

• podkolanówki • pończochy • legginsy • rajstopy • rękawy kompresyjne

ANTYCELLULITOWA, NA LIMFODEMIĘ I LIPODEMIĘ

Bielizna i odzież wykonana jest z mikrofibry. Unikalny splot nawet przy najmniejszym ruchu wywołuje **efekt masażu**. Dzianina stymuluje cyrkulację podskórną i drenaż limfatyczny. Prowadzi to do poprawy jakości skóry

z włókna emana®
 z kofeiną i wit. E
 z nanosrebrem

D

Ē

Μ

NA NIETRZYMANIE MOCZU

Wyroby medyczne wielokrotnego użytku z dyskretną stałą wszywką o właściwościach chłonnych. Polecane jako codzienna bielizna gwarantująca ochronę przed przemakaniem - 100% absorpcji cieczy, zapewniająca całkowitą suchość warstw: zewnętrznej i wewnętrznej

 do wielokrotnego prania (min. 100 prań)

artcoll.pl

e-sklep@artcoll.pl tel. 22 720 35 96 +48 510 160 100

111

Polski producent MASAŻERÓW do stóp i ciała

infolinia: 500 238 037

www.tylmed.pl

Najlepsze laski do chodzenia

Zamów on-line na: 🗢 www.swiatlasek.pl Wszelkie informacje pod numerem: 🖉 730 101 101

Dr. Comfort[®]

Nowy wymiar wygody.

Obuwie profilaktyczno-zdrowotne o atrakcyjnym wzornictwie

AMERICAN

APROBATA AMERYKAŃSKIEGO MEDYCZNEGO STOWARZYSZENIA PODIATRYCZNEGO

WYRÓB MEDYCZNY

Stabilny, wzmocniony i wyściełany zapiętek Zapewnia silniejsze wsparcie łuku podłużnego stopy

Antypoźlizgowa, wytrzymała podeszwa o lekkiej konstrukcji

Zwiększa przyczepność, amortyzuje i odciąża stopy

Miękki, wyściełany kołnierz cholewki Minimalizuje podrażnienia

Wyściełany język Zmniejsza tarcie i ulepsza dopasowanie

> Lekka konstrukcja Zmniejsza codzienne zmęczenie

Zwiększona szerokość i głębokość w obrębie palców i przodostopia Minimalizuje ucisk i zapobiega urazom

Wysoka jakkość materiałów - oddychające siatki i naturalne skóry

Dostosowują się do stopy, utrzymują je w suchości i zapobiegają przegrzewaniu

Trzy rozmiary szerokości

Podwyższona tęgość

Zwiększona przestrzeń na palce Ochronna przestrzeń na palce - brak szwów w rejonie przodostopia Minimalizuje możliwość zranień

WSKAZANIA

- haluksy wkładki specjalistyczne palce młotkowate, szponiaste cukrzyca (stopa cukrzycowa) reumatoidalne zapalenie stawów
- · bóle pięty i podeszwy stopy (zapalenie rozcięgna podeszwowego ostroga piętowa) · płaskostopie (stopa poprzecznie płaska)
- bóle pleców wysokie podbicie praca stojąca nerwiak Mortona obrzęk limfatyczny opatrunki ortezy i bandaże obrzęki
 modzele protezy odciski urazy wpływające na ścięgna, mięśnie i kości (np. ścięgno Achillesa) wrastające paznokcie
- **KALMED**

Iwona Renz. Poznan

ul. Wilczak 3 61-623 Poznań tel. 61 828 06 86 fax. 61 828 06 87 kom. 601 640 223, 601 647 877 e-mail: kalmed@kalmed.com.pl www.kalmed.com.pl

www.butydlazdrowia.pl

www.dr-comfort.pl

Producent **sprzętu do rehabilitacji i masażu** oraz **wyposażenia gabinetów medycznych**

ul. Okulickiego 43 38-500 Sanok

www.wstech.eu

biuro@wstech.eu

ZADZWOŃ

ZAMÓW ON-LINE

REHA TRADE 3

14.04.2022 | PGE NARODOWY, WARSZAWA TARGI I KONFERENCJA BRANŻY REHABILITACYJNEJ

- STREFA WYSTAWIENNICZA
- PONAD 60 FIRM Z BRANŻY REHABILITACYJNEJ
- 15 SEKTORÓW WYSTAWCÓW
- KONFERENCJA EDUKACYJNA
- WARSZTATY SPECJALISTYCZNE
- BUSINESS MATCHING

1 DZIEŃ BIZNESOWYCH SPOTKAŃ | PRESTIŻOWA LOKALIZACJA | 3 EDYCJA WYDARZENIA

WIĘCEJ INFORMACJI WWW.REHATRADE.PL

ZŁOTY SPONSOR:

PARTNER STRATEGICZNY:

PARTNER MEDIALNY:

X Technomex

REHA Biznes.pl

SPRZEDAŻ I WYPOŻYCZALNIA ZMOTORYZOWANYCH SZYN CPM ARTROMOT®

Nowoczesna rehabilitacja CPM stawu kolanowego, biodrowego, łokciowego, barkowego, skokowego, nadgarstka oraz stawów palców dłoni i kciuka.

ARTROMOT-E2 ARTROMOT-S3 ARTROMOT-K1 ARTROMOT-SP3

Najnowsze konstrukcje ARTROMOT zapewniają ruch bierny stawów w zgodzie z koncepcją PNF (Proprioceptive Neuromuscular Facilitation).

ARTROMOT-F

KALMED Iwona Renz ul. Wilczak 3 61-623 Poznań www.kalmed.com.pl

Serwis i całodobowa pomoc techniczna: tel. 501 483 637 service@kalmed.com.pl

ARTROSTIM FOCUS PLUS

ULTRASONOGRAFIA W FIZJOTERAPII

Autoryzowani dystrybutorzy Mar-Med Ado-N

+48 22 853 14 11
 info@mar-med.pl

Ado-Med

• +48 32 770 68 29

🗧 adomed@adomed.pl

PRODUCENT NOWOCZESNEJ FIZYKOTERAPII

Jesteśmy z Wami od 1986r.

Elektroterapia · Laseroterapia Magnetoterapia · Ultradźwięki Suche kąpiele CO₂

SKANER LASEROWY nowej generacji

Sprawdź naszą ofertę na www.eie.com.pl

Elektronika i Elektromedycyna Sp.J. 05-402 OTWOCK, ul. Zaciszna 2 tel./faks (22) 779 42 84, tel. (22) 710 08 39 malew@eie.com.pl, www.eie.com.pl

Wersję dla siebie kosmetologiaestetyczna.com

Aesthetic Cosmetology and Medicine

ISSN 2719-3241 | Index Copernicus 80.34 | 1/2022 (vol. 11)

Acsthetic Cosmetology and Medicine

diagnostyka

i kup bilet na targi!

Sprawdź także:

Rend INNOVATIONS

Bezpłatne webinaria, podcasty, wykłady otwarte oraz certyfikowane warsztaty z ekspertami.

www.rehainnovations.pl

www.butterfly-mag.com

tel. 85 743 22 21

kom. 603 299 035

BIOMAGNETOTERAPIA W WYROBACH MEDYCZNYCH "ORT BUTTERFLY"

BEZ BÓLU, STRESU I BEZ TABLETEK!

- LECZYSZ SIĘ NATURALNIE
- ŚPIAC, PRACUJAC, WYPOCZYWAJAC...
- USUWASZ BÓL I JEGO PRZYCZYNE!
- TERAPIA STARA JAK ŚWIAT!
- SPRAWDZA SIE I DAJE RADE W NIERÓWNEJ WALCE Z PANDEMIA - COVID 19!

REGULARNA BIOSTYMULACJA MAGNETYCZNA!

Ogromny potencjał Natury w zwalczaniu smogu energetycznego i autooksydacji, będącej główną przyczyną wszystkich chorób cywilizacyjnych! Najstarsza Terapia Świata wspomagająca każdą formę leczenia! Uważa się do dziś, że bez niej nie da się wyleczyć żadnej choroby do końca! Naturalna Terapia Magnetyczna Twoje Zdrowie, Twoja Uroda, Odporność i Sprawność do późnej starości! Wypróbuj – gdy zawiodły już inne terapie!

Biomagnetoterapia inicjuje ożywienie komórkowe, oczyszcza i "odmładza" krew, podnoszac witalność całego organizmu, który uruchamia intuicyjne procesy obronne, znosząc dyskomfort powodowany bólem, urazem lub stresem, bez konieczności ostrej dawki leków chemicznych...

oś obrotu Ziemi

igła magnetyczna

Jestem osobistym królikiem doświadczalnym! I żyję – realizujac 25 lat wciaż nowe i śmielsze pomysły w wykorzystaniu tej **boskiej** energii naturalnych magnesów! Dzięki nim pokonuję dziś niezliczone przeszkody i przeciwności losu z nieznaną mi przedtem energia i determinacja! To moja pasja! I przeznaczenie!

Najnowsza opinia klienta:

Komentarz ten jest moim osobistym świadectwem zadowolenia z produktów biomagnetycznych "Ort Butterfly", których używam od 20. lat! Zastanawiam się, zwłaszcza nad fenomenem poduszki (określenie nie jest przypadkowe) zwyczajnie; nie wyobrażam sobie snu i wypoczynku bez magnetycznej "Ort Butterfly" – pod głową! Jej ergonomiczny, przyjazny dla głowy i szyi kształt sprawia, że wysypiam się "po królewsku". Zabieram ją również ze sobą w bliższe i dalsze podróże! Czyż ądyby była to zwyczajna poduszka, fundowałbym sobie dodatkowy bagaż? Wychwalam więc ją od zarania, polecam i rekomenduję, bo jest tego warta! Bez niej nie wyobrażam sobie prawdziwie relaksacyjnego snu i błogiego, kojącego wyczpoczynku! Dziekuje, że ją Pani stworzyła!

J. Szw. Działdowo (maj 2020)

PS Poduszki "Ort Butterfly" to prawdziwe arcydziełka robione z wyczuciem i sercem... jak rzeźby Michała Anioła... Polecam wszystkim!

na cancerogenna ekspan

"smogu energetyczi

icelab VIP | VIP⁺

jednoosobowe lub dwuosobowe kriokomory do terapii ogólnoustrojowej

URZĄDZENIA DO REHABILITACJI, KRIOTERAPII, KINEZYTERAPII, FIZYKOTERAPII, HYDROTERAPII

electol.pl. ul.Łużycka 34a, 61-614 Poznań, 61 825 60 50, biuro@elecpol.pl, www.elecpol.pl

UNBESCHEIDEN

hydrosun[®] gymna Zimmer

OSCE O Seniora... Naturalne Środki Czystości

PIELĘGNACJA / PROFESJONALIZM / ŚWIADOMOŚĆ WSPARCIE / SZACUNEK

www.over-clean.pl

Immediate effects of kinesiotaping of the neck on lung function and respiratory muscle strength in stable COPD patients

Natychmiastowy wpływ kinesiotapingu szyi na czynność płuc i siłę mięśni oddechowych u stabilnych pacjentów z POChP

Mira Abdelaziz Alsaeedi^{1(A,B,C,D,E,F)}, Manjiri Suhas Kulkarni^{2(A,B,C,D,E,F)}, Gopala Krishna Alaparthi^{1(A,B,C,D,E,F)}, Kalyana Chakravarthy Bairapareddy^{1(A,B,C,D,E,F)}

¹Department of Physiotherapy, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates ²Independent Researcher, India

Abstract

Background. Chronic obstructive pulmonary disease (COPD) is complicated by the presence of frequent and recurrent acute exacerbations. The patients are asymptomatic and stable in the early stages. They develop weakness of primary respiratory muscles and use accessory muscles which lead to postural changes. The forward head posture in the neck is very common in COPD patients due to increased usage of accessory muscles and aging changes. The objective of this study is to determine the immediate effect of Kinesio-taping on lung function and respiratory muscle strength in stable COPD patients and age matched healthy individuals.

Methods. 20 stable COPD patients and 20 age matched asymptomatic participants were assessed for the pulmonary function test by Spiro lab machine and respiratory muscle strength using Micro RPM machine before applying the KT. The outcomes were repeated 30 minutes after applying the KT for correcting the forward head posture. The with-in group and between group comparison of the variables before and after the application of KT was done using student t-test.

Results. A significant correlation was found in the baseline parameters of age (p = 0.011); PEF (p = 0.004) and physical activity levels (p = 0.039). The application of Kinesio tape proved to be beneficial by improving the lung and respiratory parameters of FVC (p = 0.002) and MEP (p = 0.22) among the COPD group.

Conclusions. Our study concluded that, application of kinesio-tape can be an adjunct to conventional breathing exercises for COPD patients. There is improved lung function and reduced rate of perceived exertion after application of kinesio-tape.

Key words:

chronic obstructive pulmonary disease, kinesio-taping, forward head posture, lung function

Streszczenie

Wprowadzenie. Przewlekła obturacyjna choroba płuc (POChP) jest powikłana obecnością częstych i nawracających ostrych zaostrzeń. We wczesnych stadiach pacjenci są bezobjawowi i stabilni. Pojawia się u nich osłabienie podstawowych mięśni oddechowych, wtedy wykorzystują mięśnie pomocnicze, co prowadzi do zmian postawy. Przesunięcie głowy do przodu jest bardzo częste u pacjentów z POChP z powodu zwiększonego użycia mięśni pomocniczych i zmian związanych z wiekiem. Celem tego badania jest określenie bezpośredniego wpływu kinesiotapingu na czynność płuc i siłę mięśni oddechowych u stabilnych pacjentów z POChP i zdrowych osób w tym samym wieku.

Metody. 20 stabilnych pacjentów chorych na POChP i 20 osób bezobjawowych w tym samym wieku poddano ocenie pod kątem czynności płuc aparatem laboratoryjnym Spiro oraz siły mięśni oddechowych przy użyciu aparatu Micro RPM przed zastosowaniem KT. Pomiary powtórzono po 30 minutach od zastosowania KT do korekcji przedniego ustawienia głowy. Porównanie zmiennych w grupie i między grupami przed i po zastosowaniu KT przeprowadzono za pomocą testu t-Studenta.

Wyniki. Stwierdzono istotną korelację w wyjściowych parametrach wieku (p = 0,011); PEF (p = 0,004) i poziomu aktywności fizycznej (p = 0,039). Zastosowanie kinesiotapingu okazało się korzystne, poprawiło parametry płucne i oddechowe FVC (p = 0,002) i MEP (p = 0,22) w grupie pacjentów w POChP.

Wnioski. W naszym badaniu stwierdzono, że zastosowanie kinesiotapingu może stanowić uzupełnienie konwencjonalnych ćwiczeń oddechowych u pacjentów z POChP. Po zastosowaniu kinesiotapingu następuje poprawa czynności płuc i zmniejszenie odczuwanego wysiłku.

Słowa kluczowe

przewlekła obturacyjna choroba płuc, kinesiotaping, pozycja głowy do przodu, czynność płuc

Introduction

Chronic Obstructive Pulmonary Disease (COPD) is characterised by persistent respiratory symptoms and progressive airflow obstruction [1, 2]. It is a common condition encompassing chronic bronchitis and emphysema [3, 4]. It is complicated by the presence of frequent and recurrent acute exacerbations. These persisting symptoms and airflow restrictions occur due to alterations in the respiratory system, resulting from hyperinflation of sacs of the alveoli and consequent destruction [5]. The patients are asymptomatic and stable in the early stages. They develop weakness of primary respiratory muscles and use accessory muscles which lead to postural changes. The forward head posture in the neck is very common in COPD patients due to increased usage of accessory muscles and aging changes [6].

Kinesio taping (KT), developed by Dr. Kenzo Kase, uses a cotton tape with a hypoallergic adhesive layer. It has the ability to stretch to 140% of its original length [7, 8]. It was primarily used in musculoskeletal disorders, but recently has gained a lot of popularity in the non-musculoskeletal disorders as well [9]. The beneficial results are seen due to a combination of biomechanical, circulatory, analgesics and exteroceptive effects [7, 8]. The tape can be used for either stimulatory or inhibitory effect, solely depending on the technique of application [9].

KT is used for correction of the forward neck posture in COPD as it promotes muscle activation and reduces the abnormal muscle tension, thus strengthening the muscles [3,10]. Earlier studies indicated that the strengthening of primary inspiratory muscles help in reducing dyspnea in COPD patients. The inhibition of accessory muscles and promotion of activity of diaphragm and external intercostals have also been proved to reduce the perception of dyspnea. Kinesio-taping has been used in the earlier studies to reduce the activity of accessory muscles in COPD patients. The activity of these muscles during normal respiration can be inhibited by correction of abnormal posture and teaching correct breathing pattern [3, 11, 12].

Literature shows that, there are a limited number of studies in which the effect of KT was seen on the respiratory parameters and dyspnea in COPD patients [3,7,13-16]. This study is the first to compare and analyze the effect of Kinesio taping on lung function by stabilizing weak neck muscles of forward head posture and thus promote the lung function use in COPD patients and healthy individual. It will help us understand the importance as well as the benefits of stabilizing and strengthening the neck muscles in order to improve the lung function and respiratory parameters of COPD patients. The changed in these parameters can be appreciated better by comparing the values with healthy individuals.

Methodology

This is a non-randomized one-time experimental study design. The population included were 20 medically stable COPD subjects and 20 healthy participants aged between 45 to 65 years of either gender. All these patients were screened according to the inclusion and exclusion criteria: inclusion criteria: (a) diagnosed with stage I-III COPD (mild, moderate, severe) according to GOLD criteria; (b) willing to participate in the study; (c) Healthy individuals without any condition that would affect the tape application; exclusion criteria: (a) previous use of kinesio-taping within past 2 weeks; (b) any other intervention for the correction of forward head posture; (c) having skin sensitivity against kinesio-taping; (d) having recent scar, lesion or incision in the area of kinesio-taping application; (e) Malignant tumors; (f) Severe Pulmonary Artery Hypertension; (g) Previous neck trauma; (h) Bedridden patients.

The outcomes were measured by the co-investigators (a qualified Physiotherapists). The primary investigator applied the tape apply at the patient's house. The co-investigators were blinded about the application of the taping sequence. Convenience Sampling method was used to allocate the samples. Approval was obtained from Sharjah University and the Senior Citizen Service Department. COPD patients visiting outpatient department for Physiotherapy were explained about the study and those interested were included in the study after obtaining consent. Baseline measurement of height, weight and physical activity level with the use of IPAQ questionnaire was done.

Procedure of application of Kinesio-taping

Kinesio-taping for forward head correction was done by applying rock tape type which is highly recommended by most of the researchers. Placing the cervical spine into flexion, the posterior cervical muscles were stretched. Two 'Y' strips starting from the base of the hairline, continuing down along the erector spinae muscle with 25% stretch to each strip was applied Then, one standard 'I' strip was applied horizontally across the shoulder area with 75% stretch as seen in Figure 1. This helped to re-educate the muscles, facial correction and normalize the posture [3, 17, 18].

Figure 1. Kinesiotape applied for forward neck posture correction

Procedure of measurement of respiratory muscle strength

With Micro Rpm, each participant had their own mouthpiece and the device was sanitized after each use. The participant performed 3 maximum inspiratory breaths before applying the KT and 3 maximum expiratory breaths. During the Maximal inspiratory pressure (MIP) and Maximal expiratory pressure (MEP) measurement the participant was asked to hold the gauge with both hands and to close his or her lips firmly around the flanged mouthpiece. We applied a nose clip to avoid nasal air leak. For the MEP maneuver, the participant was asked to inhale as much as possible and then to exhale maximally for more than one second against the resistance of the gauge. For the MIP maneuver the participant was asked to exhale as much as possible (to residual volume) and then to inhale maximally for more than one second against the resistance of the gauge [19]. All measurements were recorded for analysis from sitting position as seen in Figure 2. All subjects completed a minimum of three trials with the best (highest) test result kept for analysis.

Lung function test

A computerized spirometer with a standard mouthpiece was used to measure the lung function following the guidelines of the American Thoracic Society (ATS). This computerized spirometer conducts the breathing tests and calculates an index of test quality and control. FVC, FEV1, FEV1/FVC, VC, and IC measurements are made with subjects in a sitting position. Prior to commencement of the testing, all subjects were familiarized with the test procedures and were allowed to do 3 trials before the application of KT and 3 trials after the application of KT. While performing spirometry, each subject had their own mouthpiece made of cardboard without teeth grip, and the subject held the mouthpiece tightly with the nose closed with the nose clip. The spirometer was sanitized after the use of each individual. All subjects completed a minimum of three trials with the best (highest) test result kept for analysis. A minimum 3-minute rest was given between each trial. All the subjects were given the same instructions while performing the tests to avoid bias [20].

Data analysis

SPSS Version 22.0 was used for data analysis. Descriptive statistics were used to present the demographic data, severity of COPD based on PFT values. The Shapiro–Wilk and Levene tests were used to evaluate the normality and homogeneity of the data. The t-test for independent samples and Mann–Whitney U test was used to compare baseline characteristics and Δ values. Paired t test and Wilcoxon test was used to compare variables before and after treatment in each group. Pearson correlation coefficient test was used to study the correlation of respiratory muscle strength values with age, body mass index and physical activity levels.

Figure 2. Measuring MIP/MEP

Figure 3. Lung function test

Results

Characteristics	COPD (n = 20) Mean ± SD	NON-COPD (n = 20) Mean ± SD	р
Age [year]	54.90 ± 7.12	48.85 ± 7.27	0.011*
BMI [kg/cm ²]	28.45 ± 3.74	29.54 ± 5.95	0.493
MIP absolute [cmH ₂ O)	58.45 ± 10.94	65.20 ± 11.66	0.067
MEP absolute (cmH ₂ O)	69.95 ± 13.92	72.50 ± 12.20	0.542
FVC [L/s]	1.85 ± 0.57	2.18 ± 0.52	0.070
PEF [L/s]	2.50 ± 0.91	3.32 ± 0.79	0.004*

Table 1. Demographic characteristics: Comparison of participant characteristics at the baseline using Independent 't' test

*p < 0.05 = significant; BMI- Body Mass Index; MIP- Maximal inspiratory pressure; MEP- Maximal expiratory pressure; FEV1- Forced expiratory volume at 1st second; FVC- Forced vital capacity; PEF- Peak expiratory flow;

The baseline characteristics were comparable between COPD and non COPD individuals for BMI, MIP, MEP and FV. However, the age of COPD individuals was not statistically comparable with non-COPD individuals included in our study. The PEF values were low in COPD participants compared to non-COPD individuals; the difference was statistically significant.

Table 2. Demographic characteristics: FEV1 AND MET at the baseline using Mann Whitney U test

	COPD (n = 20) Median	NON-COPD (n = 20) Median	р
FEV1 (L/s)	1.16(0.93, 1.27)	1.22 (0.97, 1.92)	0.597
Physical activity (MET minutes	1918.50 (822.00, 4315.50)	5811.00(2137, 9292)	0.039*
per week)			

p < 0.05 = significant ; FEV1- Forced expiratory volume at 1st second; MET- Metabolic equivalent

No significance seen when the mean effects of taping on FEV1 were compared in between the COPD and non-COPD group were compared. (Table 2)

Application of KT showed a significant positive result in the FVC (p = 0.02) and MEP (p = 0.022) values in the COPD group. In the healthy group, no significant changes were seen (Table 3).

Table 3. Comparison of effect of kinesio-taping on lung function and respiratory muscle strength on COPD and Non-COPD
participants (mean changes within the group)

	COPD (n = 20)			Non-COPD (n = 20)		
Variables	Pre-KT Mean ± SD	Post-KT Mean ± SD	р	Pre-KT Mean ± SD	Post-KT Mean ± SD	р
FVC [L/s]	1.85 ± 0.57	2.17 ± 0.49	0.002*	2.18 ± 0.52	2.21 ± 0.67	0.752
PEF [L/s]	2.50 ± 0.91	2.68 ± 0.76	0.069	3.32 ± 0.79	3.36 ± 0.59	0.805
MIP [cmH ₂ O]	58.45 ± 10.94	61.40 ± 10.82	0.054	67.25 ± 10.18	68.20 ± 10.09	0.178
MEP [cmH ₂ O]	69.95 ± 13.92	72.80 ± 14.03	0.022*	72.50 ± 12.20	73.30 ± 10.53	0.328

*p < 0.05 = significant; MIP- Maximal inspiratory pressure; MEP- Maximal expiratory pressure; FVC- Forced vital capacity;

No significance seen when the mean effects of taping on FEV1 were compared in between the COPD and non-COPD group were compared (Table 4).

No significance seen on comparing MIP MEP with age, BMI and physical activity levels among all participants (Table 5).

Table 4. Comparison of effects of kinesio-taping on FEV1 in COPD and Non-COPD participants (between two groups)

	COPD (n = 20)		Non-COPD		
	Pre (Median)	Post (Median)	Pre (Median)	Post (Median)	р
FVC [L/s]	1.16 (0.93, 1.27)	1.24 (1.13, 1.42)	1.22 (0.97, 1.92)	1.29 (0.96, 1.77)	0.72
*n < 0.05 = significant FV	C- Forced vital capacity:				

Table 5. Correlation of MIP and MEP (cm H20) values with age, BMI and Physical activity levels (MET minutes per week) in all the participants

	r	МІР		Р
	r	р	r	р
Age in years	-0.15	0.51	-0.296	0.20
BMI in kg/m ²	0.36	0.11	0.13	0.55
MET minutes per week	0.27	0.23	-0.64	0.78

*p < 0.05 = significant; BMI- Body Mass Index; MIP- Maximal inspiratory pressure; MEP- Maximal expiratory pressure;

Discussion

The primary aim of this study was to find out the effects of kinesio-taping on forward neck posture seen in COPD patients as compared to the healthy individuals. Furthermore, the effects of taping on the respiratory parameters were assessed as well. The baseline demographic values were checked for any significance with the MIP and MEP values in all the participants.

We compared age, the values of BMI, MIP, MEP, FVC and PEF between the two groups- COPD versus non-COPD. A positive significance was seen in the parameters of -age and PEF. The COPD patients were on the higher age range as compared to the healthy individuals. This can be supported by the fact that; the chances of individuals being affected by COPD increase with age. Older the population, higher the risk of developing pulmonary diseases. There are a few possible explanations - first, the age-related structural changes as well as the functional changes may lead to an increase in the susceptibility of pathological changes causing COPD or any other lung disease. In other words, aging may be a causative factor for COPD. Secondly, the cumulative harmful effects of life-long hazardous habits can be observed with in the older age [21].

The mean vales of the peak expiratory flow rate seen in COPD is lower than the healthy group. The comparison shows a significant result. PEF can be used as a measuring tool for measuring the airflow obstruction in COPD patients. PEF has usually been correlated with FEV1, but in our study, we did not find any such correlation while taking baseline measurement [22].

The FEV1 and physical activity levels were compared at the baseline and the median values were calculated. A positive significant value was obtained with the COPD population having a much lower activity level as compared to the non-COPD group. However, no relation between the FEV1 and both the groups was perceived. It is understandable as to why the physical activity levels would be lower in COPD subjects, considering the lung pathology. A study associated decreased physical activity with a decline in lung and heart function, muscle weakness and systematic inflammation [23,24]. Along with the pulmonary insufficiency, daily activities also depend on the limb strength. The term muscle weakness not only talks about the respiratory muscles, but it also encompasses the limb muscle weakness which affect and alter an individual's capacity to perform their daily functions without experiencing exertional dyspnoea [25].

Both the groups were given the intervention- of applying kinesio-tape, and the pre and post respiratory parameters were assessed. In the COPD group, a significant improvement was seen in FVC and MEP values. This finding can be corroborated with the results of a study conducted by Tomruk et al [14]. However, they applied the tape for sixweeks, which is about 12 sessions. Another study, the participants were given a one-session intervention, similar to our study, but did not find any beneficial results in the parameters. The improvement in these values can be explained by the fact that kinesio-tape has a positive effect on muscle activation by reducing the stress caused by malalignment or overuse [9, 26-28]. Results from the study con-

ducted by Malehorn's et al also supported our findings [29]. No significant changes were seen in FEV1 values in both the groups.

We also compared the MIP AND MEP values with age, BMI and MET. No significant correlation was noted. A study conducted by Nambiar VK and Ravindra S, compared the age, weight and height with MIP and MEP among healthy individuals of both genders [30]. They found a statistically significant negative correlation, which means the value decreased with age, unlike our study. Another study conducted by Shripad I and Nagarwala R concluded that BMI does not affect the MIP and MEP values [31]. This result corroborates with our results. However, in our knowledge, this is the first study to compare with MIP and MEP values with MET in COPD subjects.

Conclusion

This study concludes that, kinesio-taping improved the pulmonary function test parameters immediately after the application. However, KT has no immediate effect of respiratory muscle strength in both COPD and age matched non COPD individuals. Furthermore, we summarized that the age, BMI and the physical activity levels had no significant correlation to the MIP and MEP values. There is limited literature regarding these effects, and has a lot of scope for future studies.

Adres do korespondencji / Corresponding author

Kalyana Chakravarthy Bairapareddy

E-mail: kreddy@sharjah.ac.ae

Piśmiennictwo/ References

1. Labaki, W. W., & Rosenberg, S. R. Chronic Obstructive Pulmonary Disease. Ann Intern Med 2020; 173: 17-32. doi:10.7326/aitc202008040.

2. Qaseem A, Wilt TJ, Weinberger SE, et al; American College of Physicians. Diagnosis and management of stable chronic obstructive pulmonary disease: a clinical practice guideline update from the American College of Physicians, American College of Chest Physicians, American Thoracic Society, and European Respiratory Society. Ann Intern Med 2011; 155: 179-191.

3. Baxi G, Singh P, Basu S, et al. Immediate Effects of Kinesio Taping on Lung Functions, Chest Expansion and Dyspnoea in COPD Patients. Indian J Physiother Occup Ther 2020; 14: 101-105. doi:10.5958/0973-5674.2020.00018.0.

4. Porter S. Tidy's Physiotherapy E-Book. Elsevier Health Sciences; 2013.

5. Global Strategy for the diagnosis, management, and prevention of Chronic Obstructive Pulmonary Disease 2019 report. Global initiative for chronic obstructive lung disease (GOLD). Available online from: https://goldcopd.org/wp-content/uploads/2018/11/GOLD-2019-v1.7-FINAL-14Nov2018-WMS.pdf. [Last accessed on 28th May 2020]. 6. Gayan-Ramirez, G., & Decramer, M. Mechanisms of striated muscle dysfunction during acute exacerbations of COPD. J Appl Physiol 2013; 114: 1291-1299. doi: 10.1152/ japplphysiol.00847.2012.

7. Metin Ökmen, B., Şengören Dikiş, Ö., Ökmen, K., et al. (2019). Investigation of the effect of kinesiotaping on the respiratory function and depression in male patients with chronic obstructive pulmonary disease: a prospective, randomized, controlled, and single-blind study. Aging Male 2020; 23: 648-654. doi: 10.1080/13685538.2019.1567703. 8. Brateanu D. Kinesio taping technique and kinesio tex. Timisoara Phys Educat Rehabil J. 2009; 2: 36–40. doi:

9. Kase K, Wallis J, Kase T. Clinical therapeutic application of the kinesio taping method. Tokyo: Ken Ikai Co; 2003.

10. Ora J, Calzetta L, Pezzuto G, et al. A 6MWT index to predict O2 flow correcting exercise induced SpO2 desaturation in ILD. Respir Med 2013;107: 2014-2021. doi: 10.1016/j.rmed.2013.10.002.

11. De Troyer A, Peche R, Yernault JC, et al. Neck muscle activity in patients with severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 1994; 150:41-47. doi: 10.1164/ajrccm.150.1.8025770.

12. Langer D, Ciavaglia C, Faisal A, et al. Inspiratory muscle training reduces diaphragm activation and dyspnea during exercise in COPD. J Appl Physiol 2018; 125: 381-392. doi: 10.1152/japplphysiol.01078.2017. doi: 10.1152/japplphysiol.01078.2017.

13. Kimothi S, Nambiar VK, Yadav B. Immediate effects of taping of upper back on peak expiratory flow rate (PEFR) in stable chronic obstructive pulmonary disease (COPD) subjects. Indian J Physiother Occup Ther 2013;7:265. doi: 10.5958/j.0973-5674.7.3.105

14. Tomruk M, Keleş E, Özalevli S, et al. Effects of thoracic kinesio taping on pulmonary functions, respiratory muscle strength and functional capacity in patients with chronic obstructive pulmonary disease: A randomized controlled trial. Explore 2020; 16: 332-338. doi: 10.1016/j.explore.2019.08.018.

15. Daitix R.B., dos Santos K., Dohnert, M. B., et al. Limited utility of Kinesio Taping® in the physiotherapy treatment for patients with chronic obstructive pulmonary disease exacerbation. Physiother Theory Pract. 2018; 34: 741-746. doi: 10.1080/09593985.2018.1423658.

16. Arslan SA, Daşkapan AD, Pekyavaş NÖ, et al. Effects of Kinesio Taping Applied to Diaphragm Muscle on Aerobic Exercise Capacity and Pulmonary Function in Sedentary Individuals. Anatol J Clin Investig 2018; 23: 68-72. doi: 10.21673/anadoluklin.385414

17. Gibbons, J. A practical guide to kinesiology taping. Lotus Publishing. 2014.

18. Cimsit, C., Bekir, M., Karakurt, S, et al. Ultrasound assessment of diaphragm thickness in COPD. Marmara Med J 2016; 29: 8-13. doi: 10.2147/COPD.S214716.

19. American Thoracic Society/European Respiratory Society. ATS/ERS statement on respiratory muscle testing. Am J Respir Crit Care Med 2002;166: 518–624. doi: 10.1164/rccm.166.4.518.

20. Ravi S. Reddy, Khalid A. Alahmari, Paul S. Silvian, et al. Reliability of Chest Wall Mobility and Its Correlation with Lung Functions in Healthy Nonsmokers, Healthy Smokers, and Patients with COPD. Can Respir J 2019; 5175949. doi:10.1155/2019/5175949

21. Fukuchi Y. The aging lung and chronic obstructive pulmonary disease: similarity and difference. Proc Am Thorac Soc 2009; 6: 570-572. doi: 10.1513/pats.200909-099RM. 22. So JY, Lastra AC, Zhao H, Marchetti N, Criner GJ. Daily peak expiratory flow rate and disease instability in chronic obstructive pulmonary disease. Chronic Obstr Pulm Dis 2015;3: 398-405. doi:10.15326/jcopdf.3.1.2015.0142.

23. Waschki B, Spruit MA, Watz H, et al. Physical activity monitoring in COPD: compliance and associations with clinical characteristics in a multicenter study. Respir Med 2012; 106: 522-530. doi: 10.1016/j.rmed.2011.10.022.

24. Gimeno-Santos E, Frei A, Steurer-Stey C, et al. Determinants and outcomes of physical activity in patients with COPD: a systematic review. Thorax 2014; 69: 731-739. doi: 10.1136/thoraxinl-2013-204763.

25. Shin KC. Physical activity in chronic obstructive pulmonary disease: clinical impact and risk factors. Korean J Intern Med 2018; 33: 75-77. doi: 10.3904/kjim.2017.387.

26. Kalron A, Bar-Sela S. A systematic review of the effectiveness of Kinesio Taping-fact or fashion? Eur J Phys Rehabil Med 2013; 49: 699-709. doi:

27. Fu T-C, Wong AM, Pei Y-C, et al. Effect of Kinesio taping on muscle strength in athletes—a pilot study. J Sci Med Sport 2008; 11: 198-201. doi: 10.1016/

j.jsams.2007.02.011.

28. Słupik A, Dwornik M, Białoszewski D, et al. Effect of Kinesio Taping on bioelectrical activity of vastus medialis muscle. Preliminary report. Ortop Traumatol Rehabil 2007; 9: 644-651. doi:

29. Malehorn K, Hiniker J, Mackey T, et al. Kinesio Tape® Applied to the Thorax Augments Ventilatory Efficiency during Heavy Exercise. Int J Exerc Sci 2013; 6: 157-163. 30. Nambiar VK, Ravindra S. Maximal respiratory pressures and their correlates in normal Indian adult population: A cross-sectional study. Int J Physiother Res 2015; 3: 1188-1896. doi: 10.16965/iipr.2015.169.

31. Shripad I, Nagarwala R. Does obesity affect the respiratory muscle strength? An observational study. Int J Community Med Public Health 2021; 8: 1880-1884. doi: dx.doi.org/10.18203/2394-6040.ijcmph20211249.